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For systems whose parameters are accurately known up to their upper and lower limits, a ranked controllability criterion is 
introduced using interval matrices [1-3]. A procedure is proposed for calculating the minimum singular number of the interval 
matrix, which serves as a measure of the controllability margin [4]. The controllability criterion introduced is used to synthesize 
robust control. It is shown that the parameters of the controller with the required properties can be found by solving the Sylvester 
equation with interval coefficients. © 2002 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a linear object with parametric indeterminacy, the mathematical model of which is represented 
by a vector differential equation with interval coefficients 

Yc(t) = Ax( t )+ Bu(t), x( t  o) = x0; y(t)  = Cx(t), t ~ [to,*,,) (1.1) 

where x(x)  ~ R n is the vector of phase states, u(t) c R m is the vect9r of control actions, y(t)  ~ R t is the 
nxn xrn lxn vector of output (measured) coordinates (l S n ), and A ~ I R  , B  ~ I1~ and C ~ IR  are interval 

matrixes (IMs) with elements (tij = [a,j, (~ij], bq = [/~j, ~]  and cij = [~j, cij] belonging to an extended set 
of intervals IR  = {[_r, ?[_r, ~ ~ R}, which contains both correct intervals (_r, ~< ?) and incorrect intervals 
(r, 

The interval linear system (1.1) is understood as a family of "point" objects 

k(t)  = Ax( t )+  Bu(t), x( t  o) = x o, t ~ [to,**) (1.2) 

with real coefficientsA E R nxn and B E R nxm from the specified intervalsA E ~,~q-] and B ~ [B,B]: 

clef 
Yc(t) = Ax( t )+ Bu(t)c:~lk(t) = Ax( t )+ Bu(t)[ VA ~ A, VB ~ B} 

Of the different problems of robust control for interval dynamic objects, we will examine the problem 
of robust stabilization. The problem_of robust stabilization, or robust arrangement, of the spectrum 
consists of selecting the feedback K ~ I R  mxn such that the spectrum P(Ac)_of the matrix of the 
closed system A c  = (A - B K )  ~ IR  n>~ belongs to the prescribed spectrum p(-F), which is set by the 
spectrum of the reference matrix P and is positioned in the left-hand half-plane {Re 3. < 0} 

p(Ac) ~ p(-F) when all A ~ A,B ~/~ (1.3) 

/~ =diag(l~i)~=, ~ IR n×n, ~t i = Llxi,~iJ 

where P is an IM with diagonal elements that are selected on the basis of the requirements concerning 
the lower and upper limits of the direct quality indices of the transients in the closed system. The inclusion 
(1.3) is understood in a component-by-component sense 

~i (mc  ) = [~i(/~C), ~i(/~C)] ~ ~ i ( - /~ )  = [-.~i(-/~), ~i(--/~)], Vi = l . . . . .  n 

where ~'i (')" The order relation C in the extended interval arithmetic [5] was defined by the relation 
in~<R 
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def 

[-Xi(mc), ~(Ac)] c_ [_X,.(-/~), ~,.(-#)],~((_X~(Ac) >~ _X~(-F)) & (~(mc) <- ~A -~))) 

Synthesis of the controls ensuring the desired robust property (1.3) in system (1.1) reduces to solving 
the Sylvester equation with interval coefficients. The constructive use of interval matrix equations in 
the practice of synthesizing robust control depends on the presence of reliable and readily checkable 
conditions for their solvability, related to the properties of controllability and observability. 

2. I N T E R V A L  C R I T E R I O N  OF C O N T R O L L A B I L I T Y  

If, for an arbitrarily prescribed initial state X(to) = Xo and final state x (q )  = Xl, a control u(t) exists 
which converts system (1.2) with the parameters A ~ -~ and B ~ /~  within finite time q - t o from a 
state x0 into a state xl, then the interval system (1.1) (interval matrix pair (A,/3)) will be said to be 
controllable. 

We will define the matrix of controllability for interval pair (A,/~) as follows: 

The product of the two IMs in expression (2.1) is calculated in a similar way to the multiplication of 
real matrices taking into account the fact that the product of the two intervals 0 and f~ in the complete 
interval arithmetic is defined by the following interval expression [6] 

• ~ = [max{(v+u*), (0"-T-)}- max{(U+u-), (v_-E+)}, 

max{(6"+~+), (_v-u-)}-max{(_v+~'-), (f-u_+)}] 

where o + = max {o, 0} and u + = max {u, 0} are the positive parts and o- = max {-u, 0} and u- = 
max {-u, 0} are the negative parts of the real number o and u. 

We will assume that the rank of the IM/z/is equal to n if an real matrix H ~/2/has rank n: 

def  
rank/~ = nc::,{H • R "×m" I rank H = n, VH • H} (2.2) 

Then the interval analogue of the rank criterion of controllability can be formulated as follows. 

Assertion 1. The interval system (1.1) (the interval pair (A,/))) is controllable when, and only when, 

rank b = n (2.3) 

The correctness of Assertion 1 follows from the controllability of "point" systems with all possible 
values of their parameters and definition (2.2) of the rank of the IM. 

Set (2.1) has the cardinality of a continuum. To check criterion (2.3), it is necessary to calculate the 
rank of the countless number of controllability matrices of points system (1.2). 

3. C A L C U L A T I O N  OF THE RANK 
OF THE I N T E R V A L  M A T R I X  

We will solve the problem of determining the rank of the controllability IM by factorizing it in the form 
of a singular expansion. The singular expansion of the real matrix H ~ R nxm of the rank k has the form 

H = W~V (3.1) 

where W ~ /~ '~ and V ~ R mxm are orthogonal matrices whose columns are the left- and right-hand 
singular vectors of matrix H, identical with the eigenvectors of matrices H H  r and H T H  respectively. 
The matrix Z = ((Tij) ~ Rnxm consists of a diagonal quadratic cell of dimension q x q (q = min {m, n}) 
s u c h  t h a t  (7ij = 0when i  ¢ j, (711 ~ (722 -~ - "  ~" (Tkk > (Tk+l ,k+ l  = . "  Oqq = 0 ,  andwhenn  ;~ m of additional 
zero rows and columns. Diagonal elements (7i =- (Tii of matrix X, termed singular numbers of matrix H, 
are non-negative square roots of the eigenvalues (EVs) of the matrix H H  ~. 
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It is well known [7] that the rank of the arbitrary matrix H is equal to the rank of the diagonal cell 
of the matrix Y, in its singular expansion, and consequently the rank of the matrix can be defined as the 
number of non-zero singular numbers. 

We will generalize the approach to determining the rank of the matrix by estimating the non-zero 
singular numbers for the interval case. For this, we will use the relation between the singular numbers 
of the matrices H ~ l i  and the EVs of the matrices H H  r ~ 111:1 T. 

We will apply as the singular expansion of IM l i  a set of singular expansions of the real matrices 

. . . c l e f  

f l  = W~,V c:~{H = WEV I VH E fl} 

The matrices W, E and Vwere defined in the explanations to formula (3.1). 
The set 

clef 
(~s(/4) = [os(H),~s(/~)]¢:~ {(~s(H),s = 1 ..... q q = min{n, ml l VH e/~1 (3.2) 

consisting of singular numbers of all real matrices H ~ l i  will be termed the singular number of the 
I M H  E IR  ~ .  

Assertion 2. The singular numbers of the IM l i  ~ IR n ~  are non-negative square roots of the EVs of 
the matrixli l i  T ~ IR ~'~ o r l i r l i  E IRm~m: 

Oq_j( fi]) = ~/~.ra: j( f-lT" fi]) ---- ~ .n_ j (  f~f-]l'), j = 1 ..... q--I ,  q = min{n,m} ( 3 . 3 )  

Proof. Consider the matrix H H  r, the EVs ~.i(HH r) of which are numbered in order of increase 
~,1 ~< ~,2 ~< ..- ~< ~,n. If w i are the columns of the matrix W, then 

HHrwi =~,i(HHl')wi , (wi ,wj)mSij;  i , j = l  ..... n (3.4) 

where (', ") is a scalar product and 8ij is the Kronecker delta. 
Let the elements hij of the matrix Hvary within certain limits: hij ~ [*ii. = [h#, hij]. Then it is necessary 

to examine the set of matrices H that is described by the IM l i  ~ IR n ~ .  W~aen the elements of matrix 
H change, the elements of the matrix H H  T will also change. When the elements of the matrix H change, 
each representative H H  r ~ liI:l T, by virtue of the method of its construction, will remain symmetrical, 
which will keep the EVs real and preserve the orthogonality of the eigenvectors for each 

T T representative H H  from set l i l i  in problem (3.4). 
If ~,i(HH r) is the approximate EV of the symmetrical matrix H H  r, and ~'i is an approximate eigenvector 

normalized by the condition Ilwillr7 1, then the magnitude of the discrepancy of the left- and right- 
hand side of Eq. (3.4) when Li(HH ) and rb i are substituted into it is equal to ~- = HHrwi - ~,i(HH r) ~'i. 
The accurate EV ~,i(HH r) of the matrix H H  T will belong to the interval [8] 

[~'i(HHr) - ~-i, ~'i(HHr) + e'i] 

where ei = II 112 is the Euclidean norm of the discrepancy. 
The singular numbers of the real matrix H and the EVs of the matrix H H  r or HTH are connected by 

the relation [7] 

f fq_j(H) : 3/2gm_j(HrH) : 3/~.n_j(HHT), j = 1 ..... q -  !, q = min{n,m} (3.5) 

Changing to the IM, we establish that, for each symmetrical matrix H H  T ~ l i l i r ,  there is a set of 
eigenvalues lying in the range 

~,i(/://~r)=[_Xi(/4/~r), ~ i ( f l f t r ) ] = [ X i { m e d ( f l f l r ) } - e i ,  Z,/{med(/4/4r)}+¢/] (3.6) 

where 

Ei i 2 (3.7) 
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wi is the eigenvector corresponding to the EV g,i {med(-Qflr) }, med(/-/fiT) = ~_~r + HHr)/2 is the median 

of the IM/-]rH r, = col(l jl)j"__l is the modulus of the interval vector ~. and = max{l _ijl, I I 0'1} is 

the modulus of itsjth component. 
Let Z aed {~ ~ IRI(z  > 0) & (~? > 0)} be a subset of non-negative intervals. We will define on the 

subset Z the operation of calculating the square root: ~i ~ Z, , ~  = L\/a_ ~, x/~/. From the relation (3.5) 
and the definition of the singular number (3.2) there follows expression (3.3), in which the EVs of the 
IM H/_r/r are calculated by means of formula (3.6). 

Assertion 3. The rank of the IM/~ ~ I /~  xm is equal to k when, and only when, the number of its singular 
numbers belonging to the subset of non-negative intervals is equal to k: 

def 
rank/~=kc:~{6s(H)~Z,  V s = !  ..... k, k<~q=min{n,m}} 

In other words,_for singular numbers of the IM, the following inequalities must be satisfied: 
~ (D) > 0 and 8~ (D) > 0. Assertion 3 follows from the properties of the singular expansion of the real 
matrix and the definition of the singular number of the IM. 

Let (ti) denote the least distance of points of the interval d from zero [9] 

(a)~f[min{lal,  I~1}, if 0~f i  
[ 0, if 0~ f i  

The least distance from the minimum singular number to zero in the IR can serve to some degree as 
a measure of the remoteness of the controllability matrix D from the set of degenerate matrices and, 
accordingly, can serve as a measure of the controllability margin. 

~t(,~, B) = ( 6 ~ , ( b ) )  = min{I _.q,~,(b)I, 15~.(b)I} (3.8) 

4. T H E  P R O B L E M  OF T H E  R O B U S T  A R R A N G E M E N T  
OF T H E  S P E C T R U M  

The problem of the arrangement of the spectrum is one of the classical problems of the linear theory 
of optimum control. Russian scientists have made a considerable contribution to development of the 
theory of the analytical construction of controllers and methods of constructing stabilizing controls 
[10-13]. For systems with real coefficients, the problem of the arrangement of the spectrum or the 
problem of synthesizing a stabilizing controller, as is well known [14], can be reduced to the solution 
of Sylvester's equation. We will solve the problem of the robust arrangement of the spectrum of a 
dynamical system with interval indeterminacy of the parameters using the controllability criterion 
introduced. For this, we will examine the Sylvester interval matrix equation 

,~/5+/5/~ =/~t~ (4.1) 

where (~ e IR m'~ is an arbitrary matrix and P e I R  nxn is the IM defining the desirable dynamics of the 
closed system and satisfying the requirement 

9(,4) n 9(F) -- O (4.2) 

where 9(`4) = {o(A),IVA ~ ,4, o(A) = {J~i(A), i = 1 . . . . .  n}} is the spectrum of the IM `4, and 
_9(/~) = {p(F) I VF ~ F, o(F) = {Z/(F) = ~t i E ~i, i = 1 . . . . .  n}} is the spectrum of the reference matrix 

F prescribed by the sequence {121 . . . . .  ftn}, in which the interval numbers ~t i = [~i ,  ~1/] are mutually different 
and ft i > 0. The intersection (4.2) is understood in the component-by-component sense 

~.i (,~) ¢'~ ~.i ( P )  ---- Q~, V i = I  . . . . .  n 

for eigenvalues of the matrices`4 and/~ order according to increase (or decrease). 
Interval control (4.1) is understood as a set of equations of similar structure 

AP + PF = BG (4.3) 
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in which the real coefficientsA E R nXn, B E R " ~ ,  G E R m ~  and F e R nxn take all possible values from 
the prescribed range A,/~, (~ and P 

The set 

/3 = {P e R "X" I(VA e ,4)(VB e B)(VG e (~)(VF e F)(AP+ PF = BG)} (4.4) 

will be termed the combined set of solutions of the interval matrix equation (4.1). 
The parameters/C E I R  m'n of the robust controller in the form of vector state feedback 

u( x ) = -f( .x (4.5) 

are found from the equation 

E[~= (7,~{KP = alva e (;, v t ,  e el 

System (1.1), closed by controller (4.5) with the parameters 

k = {K e R ''x" I ( V G  e (3)(VP • ~')(KP = G)} 

takes the form 

(4.6) 

(4.7) 

it(t) = (A - BIOx( t )  = Acx( t ) ,  x ( t  o) = x o (4.8) 

and its properties are defined by the following theorem. 

Theorem. Let 
(1) the interval matrix pair (A-,B_-) be controllable; 
(2) the interval matrix pair (G ,F)  be observable; 
(3) condition (4.2) be satisfied. 
Then control (4.5) with parameters (4.7) ensures that the spectrum of the matrix_A c of closed system 

(4.8) belongs to the spectrum of the reference matrix (-/~) for all A ~ A and B ~ B. 

Remark. The set of robust controllers (4.5) with parameters (4.7) can be interpreted as a nominal controller 
with a permissible variation 

k= Xo-+SK 

where/Co = reed/( = (K + _K)/2 are nominal parameters, and 8/(o = tad/(  = (K - _K)/2 is the tolerance on the 
nominal parameters. 

The solution of Eq. (4.1) can be reduced to solving the system of interval algebraic equations [15] 

where 

I~'~ = E (4.9) 

... ?.,I. 
2,21,, A + . t 2 d . . . .  ),,21. 

?,J. ... A + ? j .  
- 2 

= col ( /5)  e IR "z . $ = c o l ( E )  e IR"  , /~ = d iag ( l }~ ,  

EIr n2 xn2 

E = B G  

® is the direct or Kronecker product of the_matrices, and col(P) = (/~1, . . . . .  fin1 . . . . .  Pin, . . . .  [~nn) r is 
the operator of the evolution of the matrix P into a vector corresponding to ordering of the elements 
in the columns. 
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To solve interval system (4.9), direct and iteration methods, described, for example, in [9, 16], can 
be used. 

Proof. If the conditions of the theorem are satisfied, solutions of Sylvester's "point" equation (4.3) 
exist, and consequently there is a combined set of solutions (4.4) of interval equation (4.1). Equation 
(4.1), taking relation (4.6) into account, takes the form 

/]/3+/3F = B/(P (4.10) 

If the terms opp(/SP) and o p p ~ / ~ )  are added to the left- and right-hand sides of Eq. (4.10), we obtain 
the equivalent equation 

/3 + opp(BK/3) = opp(/3/~) (4.11) 

where opp is the operation of taking the opposite element in the full interval arithmetics 

dee 
opp(fi) = [-a, - ~], fi + opp(fi) = 0 

By virtue of the property of subdistributivity, the inclusion 

(/] + (-I)(B/~'))P ~/] /3+ opp(BK/3) = (-I)/3F 

follows from Eq. (4.11). 
LetP be a non-degenerate matrix (all point matrices are non-degenerate). Then the latter inclusion 

is equivalent to the inclusion 
/3-' ( A + (-I )( BK) )P ~ ( - l )F  

'11 

which is equivalent to the following assertion: for anyA ~ A and B ~ B, the matrixAc = (,4 - B K )  
is similar to any matrix_(-F) ~ (-F), i.e. 9(Ac) = 9(-F). Since the similarity occurs for aUA 6 A and 
B ~/3, the inclusion 9(Ac) C 9(-F) holds. Consequently, the spectrum of the closed system is a subset 
of the prescribed spectrum, which it was required to prove. 

The procedure proposed for checking the conditions of solvability of the Sylvester-type interval 
equation enables One to synthesize a controller ensuring robust stability of systems with parameters 
that are accurately specified up to their lower and upper limits. 

5. EXAMPLE 

Let n = 2, x = (xb x2) ~ R 2 and the interval parameters of system (1.1) be such that 

A=11425] [42511, B--11234] [2.O]1 (5.1) 

The controllability matrix (2.1) for the examined pair (.~,B) is equal to 

b=ll ~la~ll={[2~) 4] 0118'201 [4,8] I 
[2 ,4 ]  [4 ,8]  [8,201R 

In determining the rank of the controllability matrix, we will use a procedure described earlier in 
[17], For this, we will calculate the symmetrical matrix 

b b r  _ ~[84, 480] [64. 320]] 
- {{ [64, 3201 [84, 32011 

its median 

202,'921 
the eigenvalues ~,a(med/5/5 T) = 90 and ~2(med/5/5 T) = 474 and the Corresponding eigenvectors 

1o.7o'711 
'o, -- 11_o.7o711 
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and 

_ 0.707 ] 
~ 2 -  0.70711 

Then, from formula (3.7), we find the vector of the discrepancy et = 69.99 and e 2 = 325.94, and, 
using relation (3.6), the eigenvalues of the IM/)/~r:  

~l(bbr)=fX_~, ~1]=[20.01, 159.99], ~,2(bbr)=[~_2, ~2]=[148.06, 799.94] 

Then, by relation (3.3), the singular numbers of the controllability matrix are 

~l(b)=[o_l, 51]=[4.47, 12.65], ~2(b)=[0_2, 52]=[12.17, 28.28]. 

Both singular numbers of the controllability matrix belong to a subset of non-negative intervals and, 
according to Assertion 3, to rank D = 2. Consequently, system (1.1) with the given parameters are 
controllable, while the controllability margin (3.8) is equal to 

g(A, /~)=min[4.47, 12.65}=4.47 

We will select 

o , _l[12,1 51 151[ p__1%251 t20, 2511 [12,' 
Solving the Sylvester equation (4.1), we find 

 =[tL021 
[I,0211 

and from Eq. (4.6) we determine the parameters of the controller (4.5): 

/~,= [ 1 2 ,  7.51 [I, 0.51 
II 0, 0.51 [12, 7.511 

Then, system (1.1), closed by the given controller, takes the form 

[-20, - 2511V 

The eigenvalues of the closed-contour matrix which are equal to 

~.1,2 (ac) = [X,  ~ 1  = [ - 2 0 ,  - 251 

are positioned in the left-hand half-plane for all values of the parameters (5.1) from the prescribed 
intervals, which confirms the robust stability of the system with the controller synthesized. 
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